Two-Dimensional Gas of Disks: Thermal Conductivity
نویسنده
چکیده
The phenomenon of heat conduction in a two-dimensional gas of N hard disks is studied in the hydrostatic regime by means of nonequilibrium molecular dynamics (N ranging from 100 to 8000). For systems with N>~I500 the temperature and density profiles observed are in excellent agreement with the continuous theory, but the conductivity k differs from the one derived from Enskog's theory in a systematic way. This difference seems to slowly decrease with increasing density.
منابع مشابه
The Role of Thermal Conduction in Accretion Disks with Outflows
In this work we solve the set of hydrodynamical equations for accretion disks in the spherical coordinates (r,θ,ϕ) to obtain the explicit structure along θ direction. We study a two-dimensional advective accretion disc in the presence of thermal conduction. We find self-similar solutions for an axisymmetric, rotating, steady, viscous-resistive disk. We show that the global structure of an advec...
متن کاملNanoscale Graphene Disk: A Natural Functionally Graded Material–How is Fourier’s Law Violated along Radius Direction of 2D Disk
In this Paper, we investigate numerically and analytically the thermal conductivity of nanoscale graphene disks (NGDs), and discussed the possibility to realize functionally graded material (FGM) with only one material, NGDs. Different from previous studies on divergence/non-diffusive of thermal conductivity in nano-structures with different size, we found a novel non-homogeneous (graded) therm...
متن کاملTransport coefficients for granular media from molecular dynamics simulations.
Under many conditions, macroscopic grains flow like a fluid; kinetic theory predicts continuum equations of motion for this granular fluid. In order to test the theory, we perform event-driven molecular simulations of a two-dimensional gas of inelastic hard disks, driven by contact with a heat bath. Even for strong dissipation, high densities, and small numbers of particles, we find that contin...
متن کاملUsing the Lattice Boltzmann Method for the numerical study of non-fourier conduction with variable thermal conductivity
The lattice Boltzmann method (LBM) was used to analyze two-dimensional (2D) non-Fourier heat conduction with temperature-dependent thermal conductivity. To this end, the evolution of wave-like temperature distributions in a 2D plate was obtained. The temperature distributions along certain parts of the plate, which was subjected to heat generation and constant thermal conductivity condit...
متن کاملThree-dimensional numerical simulation of temperature and flow fields in a Czochralski growth of germanium
For a Czochralski growth of Ge crystal, thermal fields have been analysed numerically using the three-dimensional finite volume method (FLUENT package). The arrangement used in a real Czochralski crystal growth lab included a graphite crucible, heat shield, heating device, thermal insulation and chamber including two gas outlets. We have considered two cases for calculations, which are configur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995